
Constant expressions

Keyword constexpr specifies that it is possible to evaluate the result of a function or the

value of a variable at compile time. Example:

#include <numbers> // see https://en.cppreference.com/w/cpp/numeric

constexpr double CircleArea(double radius) { return numbers::pi * radius * radius; }

// now function CircleArea() can be called from constant expressions

The following expression is an constant expression:

constexpr double a1 = CircleArea(10); // value of a1 will be calculated at compile time

a1 += 10; // error – a1 is constant

The following expressions are not constant expressions:

const double a2 = CircleArea(10); // value of a2 will be calculated at run time

double a3 = CircleArea(10); // value of a3 will be calculated at run time

double a4;

cin >> a4;

double a5 = CircleArea(a4); // value of a5 will be calculated at run time

Constant expressions may improve the application performance. See more at

https://en.cppreference.com/w/cpp/language/constant_expression and

https://en.cppreference.com/w/cpp/language/constexpr

https://en.cppreference.com/w/cpp/numeric
https://en.cppreference.com/w/cpp/language/constant_expression
https://en.cppreference.com/w/cpp/language/constexpr

if / else with initializing

Let us have code snippet:

int n = fun();

if (n > 0) {

….. // perform some operations with n

}

else {

...... // perform some other operations with n

}

Starting from C++ version 17 we may write this snippet as follows:

if (int n = fun(); n > 0) {

….. // perform some operations with n

}

else {

...... // perform some other operations with n

} // from this point variable "n" is out of scope

Variable defined and initialized in if-statement is visible and has memory:

• in conditional expression of if-statement as well as in the conditional expressions of the

following if-else-statements;

• in the body of if-statement as well as in the body of the following if-else-statements and

also in the body of final else-statement

switch with initializing

Similarly to if / else, in C++ version 17 the switch-statement may also include definition and

initialization of variables. Example:

enum class colors { Red, Green, Blue };

colors GetColor() { …… }

switch (colors wall = GetColor(); wall)

{

case colors::Red:

……. // do something with variable wall

break;

case colors::Blue:

……. // do something with variable wall

break;

case colors::Green:

……. // do something with variable wall

break;

} // from this point variable "wall" is out of scope

Default constructors (1)
Default constructor has no arguments. Its body may be (but not must be) empty.

If the class declaration does not contain constructors, the compiler itself generates a

default constructor having empty body. But sometimes you may need a class in which

there are no constructors at all. In that case write:

class Test {

public: Test() = delete; // explicitly deleted default constructor

………………

};

If the class declaration contains constructors (with or without arguments), the compiler

does not generate its own constructor.

It is also possible to forbid the automatic generation of default copy constructor and

default operator= for assignment overloading:

class Test {

……………..

public: Test(const Test &) = delete;

Test& operator=(const Test &) = delete;

………………

};

Default constructors (2)
It may happen that the programmer does not see any need to include a default constructor

into his / her class declaration. But for example the C++ standard containers operate only

with objects from classes having the default constructor. In that case we need to add to

the declaration of our class our own empty default constructor:

class Test {

public: Test() = default; // explicitly defaulted constructor

// we may also write Test() { }

………………

};

Shorthand return (1)
Let us have:

struct Date {

int day, month, year;

Date(); // default constructor implemented in file Date.cpp calls the computer's clock

Date(int d, int m, int y); // implemented in file Date.cpp

};

Then instead of

Date GetDate() {

Date d; // default constructor is called

return d;

}

we may write

Date GetDate() {

return Date(); // default constructor is called

}

or

Date GetDate() {

return { };

}

return { } means that the default constructor of the return value type is called.

Shorthand return (2)
Similarly instead of

Date GetDate() {

Date d(26, 5, 2023);

return d;

}

we may write

Date GetDate() {

return Date(26, 5, 2023);

}

or

Date GetDate() {

return { 26, 5, 2023 };

}

Conversion constructors (1)

Let us have class

class Test1

{

public:

 int value;

 Test1(int i) : value(i) { }

};

and function

void TestFun1(Test1 t)

{

 cout << t.value << endl;

}

Then

TestFun1(10); // prints 10

is correct because the compiler handles the constructor as a casting method: it casts integer 10

to object t of class Test1. Of course, the equivalent expression

TestFun1(Test1(10));

is better to understand. From C++ version 11 any constructor with arguments may be

interpreted as casting operator or in other words, is a conversion constructor. In the earlier

versions a conversion constructor had to have default values for all except one of its arguments.

Conversion constructors (2)
Let us have class

class Test2

{

public:

 int value1, value2;

 Test2(int i, int j) : value1(i), value2(j) { }

};

and function

void TestFun2(Test2 t)

{

 cout << t.value1 << ' ' << t.value2 << endl;

}

Then

TestFun2({ 10, 20 }); // prints 10 20

is equivalent with

TestFun2(Test2(10, 20));

To prevent interpreting a constructor as casting operator declare it with keyword explicit, for

example:

explicit Test2(int i, int j) : value1(i), value2(j) { }

After that:

TestFun2({ 10, 20 }); // compile error

Move semantics (1)

Suppose we have class Matrix:

class Matrix

{

private:

 int nRow = 0;

 int nColumn = 0;

 double **ppMatrix = nullptr;

public:

 Matrix() { }

 Matrix(int, int);

 Matrix(const Matrix &);

 ~Matrix();

 Matrix &operator=(const Matrix &);

 Matrix operator+(const Matrix &);

………………………………….

};

Move semantics (2)

Suppose we have also a function with prototype:

Matrix Sum(Matrix &, Matrix &);

and code snippet

Matrix a, b;

Matrix c = Sum(a, b); // the same as c = a + b

As we use call by reference, Sum has access to a and b, therefore copying of arguments is

not needed. But Sum has to create and return the temporary result matrix that is in turn the

argument of copy constructor for c. The copy constructor copies all the values from result to

c. At last the result as the local variable of Sum is removed (its destructor is called):

Matrix::Matrix(const Matrix &m)

{ // copy constructor, "this" is matrix c and m is the temporary return value of Sum

 this->nRow = m.nRow;

 this->nColumn = m.nColumn;

 this->ppMatrix = new double *[nRow];

for (int i = 0; i < this->nRow; i++)

 *(this->ppMatrix + i) = new double[nColumn];

for (int i = 0; i < this->nRow; i++)

 for (int j = 0; j < this->nColumn; j++)

 ((this->ppMatrix + i) + j) = *(*(m.ppMatrix + i) + j);

}

So we have 4 matrices: a, b, c and a temporary.

Move semantics (3)

But actually there is no need to allocate new vectors for matrix c, copy everything and at

last destroy the temporary matrix from Sum. It is more reasonable to copy only the

numbers of rows and columns and the pointer ppMatrix, i.e. simply capture the vectors

from heap and use them in c. It is said that instead of making a copy we move heap data

(actually we copy the pointers to them) from one object to another.

As at the end of Sum the destructor for its local temporary matrix is called anyway, during

moving we must refuse to delete the data vectors. If the destructor is written in the

following way:

Matrix::~Matrix()

{

 if (ppMatrix)

 { // if ppMatrix is set to 0, deletes nothing

for (int i = 0; i < nRow; i++)

 {

 if (*(ppMatrix + i))

 delete *(ppMatrix + i);

 }

 delete ppMatrix;

 }

}

we must simply set the ppMatrix to nullptr.

Move semantics (4)

But the old copy constructor is still needed because the heap data moving is possible only

when the original is a temporary matrix not needed afterwards. Consequently, we need

two constructors: almost obligatory copy constructor and optional move constructor:

Matrix::Matrix(Matrix &&m)

{ // "this" is matrix c and m is the temporary return value of Sum

 this->nRow = m.nRow;

 this->nColumn = m.nColumn;

 this->ppMatrix = m.ppMatrix; // move data on heap

 m.ppMatrix = nullptr; // when the temporary matrix is removed, data on heap is kept

}

&& specifies a new data type: rvalue reference. The ordinary reference (&) or lvalue

reference may refer only to lvalues located on a memory field that can be identified (by

identifier, by array index, by pointer, etc.). The rvalue reference may refer to temporary

objects we cannot identify. For example:

Matrix c = a + b;

Here a temporary matrix presenting the result of addition is created, but for us it has no

name and cannot be handled. This matrix is an rvalue and it is wise to create c with the

move constructor.

Matrix c = a;

Here we must create c with the copy constructor.

Move semantics (5)

The C++ compiler is able to detect whether to use copy constructor (argument is lvalue

reference) or move constructor (argument is rvalue reference):

Matrix c = a + b; // if present, the move constructor is called; if not then the copy constructor

Matrix c = a; // the copy constructor is called

However,

Matrix c = Sum(a, b); // the copy constructor is called

The problem is that the compiler does not know what function Sum actually does and returns.

For example, it may return not result of addition but one of the inputs. To force the call to

move constructor, write:

Matrix c = move(Sum(a, b)); // std::move, if necessary, converts lvalue to rvalue

Unnecessary copying may also take place in operator= assignment overloading function.

Therefore it may be wise to overload assignment twice: one with copying and the other with

moving. The main ideas and the technique are the same as in case of constructors.

However, the move assignment operator function has an important difference: it must capture

the heap data from temporary object standing right of the = sign, but it must also release its

own heap data that has become outdated.

Matrix a(5, 5), b(5,5), c(5, 5);

……………… // set values to elements of a

b = a; // actually b.operator=(a); copy assignment needed

c = a + b; // actually c.operator(a +b); move assignment may be used

Move semantics (6)
Matrix &Matrix::operator=(const Matrix &m)

{ // b = a; here "this" means matrix b and m means matrix a

 if (this == &m)

 return *this;

 if (!this->ppMatrix || !m.ppMatrix)

 throw new exception("Empty operand(s)");

 if (m.nRow != this->nRow || m.nColumn != this->nColumn)

 throw new exception("Dimensions do not match");

for (int i = 0; i < this->nRow; i++)

 for (int j = 0; j < this->nColumn; j++)

 ((this->ppMatrix + i) + j) = *(*(m.ppMatrix + i) + j); // overwrites the old values

 return *this;

}

Matrix &Matrix::operator=(Matrix &&m)

{// c = a + b; here "this" means matrix c and m means temporary matrix got after addition

 …………………………. // the same as above written in brown font

 this->Destroy(); // the body is equivalent with the body of destructor

 // removes the old values

 this->ppMatrix = m.ppMatrix;

 m.ppMatrix = nullptr;

 return *this;

}

Modules (1)

Header files (*.h files) have several problems. For example, we need to avoid multiple

including of the same file, sometimes we must watch on the order of #include directives, etc.

The standard header files may consist of tens of thousands of lines of code – this is a problem

for compilers. Modules are to solve those issues.

To work with modules in Visual Studio 2022 you need to install the modules for version build

tools. To see the instruction type into Google "error C1011" (if the mentioned tools are not

installed you get this fatal error).

Also, set the C++ language standard to Preview – features from the latest C++ working draft

(std:c++ latest) and Enable Experimental C++ Standard Library Module to

Yes(/experimental:module).

Do not try to insert modules into a half ready project. Use modules as the main building

components in your next project that you will start from scratch.

Caution: actually the support of modules in Visual Studio 2022 is experimental (although

Microsoft claims that C++ v.20 standard modules are fully implemented). You may get

strange error messages or even message E1504 (internal compiler error).

Some useful links:

https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170

https://www.modernescpp.com/index.php/cpp20-a-first-module

https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-

implementation-unit

https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit

Modules (2)

A module consists of one (only one) module interface file and optional number of module

implementation files. In Visual Studio 2022 the extension of module interface file is *.ixx.

Some other compilers use extension *.cppm. The filename may be any. The module

implementation files are ordinary *.cpp files.

To start add to your project a new module interface file (in Visual Studio it is similar to

adding a new item or class). Example:

module; // starts to declare a module

// The next block is the global module fragment. Mostly it contains #include directives

// non-importable header files like *.h files from C

#include "stdio.h"

// Then we must set the module name. By default it is the same as the interface filename

export module Example1;

// In the next block we specify modules that our module must import. The C++ include files

// are importable. We may also import other modules from our project.

import <iostream>;

import <numbers>;

import <string>;

// Next the non-exported declarations must follow

using namespace std;

Modules (3)

// At last we must specify what our module will export. We may export classes, structs,

// functions, namespaces, enumeration classes, etc.

export class Circle

{

public:

 double radius = 0,

 area = 0,

 perimeter = 0;

 Circle(double r) : radius(r) {

 area = numbers::pi * radius * radius;

 perimeter = 2 * numbers::pi * radius;

 }

 string ToString() {

 return "Radius: " + to_string(radius) + " Area: " + to_string(area) +

 " Perimeter: " + to_string(perimeter); }

 void PrintCircle() {

 printf("%s\n", ToString().c_str()); }

};

Here is the end of module intereface. In this simple example module implementation files are

not needed.

Modules (4)

Here is file testing module Example1:

import <iostream>;

import Example1;

using namespace std;

int main() {

 Circle c(10);

 cout << "Circle parameters ";

 c.PrintCircle();

 return 0;

}

Turn attention that although we imported iostream into module Example1, in the file for

testing the module (this file does not belong to the module) we need to import it once more.

iostream and any other module imported into our Example1 module are not automatically

exported into into files that in turn import Example1.

Instead of importing the C++ standard headers separately, you may import them with one

sentence:

import std.core;

std.core does not include headers <atomic>, <condition_variable>, <future>, <mutex>,

<thread>, they are joined into std.threading. See more from https://learn.microsoft.com/en-

us/cpp/cpp/modules-cpp?view=msvc-170

21.06.23 – there were problems with std.core

https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170

Modules (5)
module; // module interface file Example2.ixx

#include "time.h"

………………………… // other header files

export module Example2;

import <iostream>;

………………………….. // other imported modules

using namespace std;

export class Date {

private:

 int Day;

 char Month[4];

 int Year;

 ………………………. // other attributes

public:

 Date();

Date(int d, int m, int y);

 Date(const Date&);

 ………………………….. // other methods

};

export Date CreateRandomDate(Date begin, Date end); // exported function

Modules (6)
#include "time.h" // needed because time() is a static function

module Example2; // module implementation file Date.cpp

#pragma warning(disable : 4996)

Date::Date() { // constructor

 time(&Now);

 struct tm Tm;

 localtime_s(&Tm, &Now);

 Day = Tm.tm_mday; // 1...31

 strcpy(Month, MonthNames[Tm.tm_mon]); // 0...11

 iMonth = Tm.tm_mon + 1;

 Year = Tm.tm_year + 1900; // current year - 1900

}

…………………………….. // other methods

Date CreateRandomDate(Date begin, Date end)

{ // implementation of function declared in module interface file

 …………………………….

}

Modules (7)

If you do not use modules and make changes in a *.h file, the system recompiles the complete

project. Therefore, if you want to save time, put the code of class methods not into the class

declaration but into a separate *.cpp file. In module files making changes in the code of class

methods does not require the immediate recompilation (exception: it is true if you do not

touch the function header). This is because a module interface file does not include any

function implementations, even if the implementations are directly written into the interface

file (as they are in Example1). In other words, methods implemented in *.h files are by

default inline methods, methods implemented in modules are not.

Coroutines (1)
If a function (caller) calls another function (callee), then the callee runs until its end or

until return statement or until an exception is thrown. After that the local variables of

callee are removed and the caller continues to run.

If the callee is not an ordinary function but a coroutine, the callee may temporarily suspend

its work and send some results to the caller. The control is switched back to the caller and

the callee pauses its work. When the caller has decided that the callee must continue its

work (for example, when the analysis of data sent by callee is completed), it forces the

callee to resume. It is not multithreading – the caller and callee do not run concurrently. We

may say that the coroutine simply runs in background and suspends and resumes its work

time to time. The figure is from https://www.modernescpp.com/index.php/implementing-

futures-with-coroutines:

https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines

Coroutines (2)

A coroutine behaves like an object: it has state. Coroutines do not use the stack: on

suspending the state is stored in a heap-allocated separate object.

 A coroutine must contain at least one of the following keywords: co_await, co_yield,

co_return. A suspended coroutine may simply wait for the resume command (co_await). It

may also exchange data with the caller (co_yield) and at the end send to the caller some

result (co_return but not return).

Formally, a coroutine is defined as any other function:

return_value_type coroutine_name(parameter_list) { body }

The return value type cannot be void, C++ standard type like int or standard class like string.

It must be a user's class built according to some strictly specified rules. When the coroutine

starts to run, an object of this class is created (so actually we do not have a return value as

such). That object called as the coroutine interface is responsible for creating, running (i.e.

suspending, resuming, data exchanging) and destroying of the associated with it coroutine.

Writing the code for a coroutine class is a serious work and unfortunately C++ v.20 has no

any tools that would make it easier. C++ v.23 can help, but in specific simple cases only.

See the examples from IAX0587 Examples.zip.

The best source for studying coroutines is Nicolai M. Josuttis "C++ 20. The Complete

Guide" 2022.

	Slide 1: Constant expressions
	Slide 2: if / else with initializing
	Slide 3: switch with initializing
	Slide 4: Default constructors (1)
	Slide 5: Default constructors (2)
	Slide 6: Shorthand return (1)
	Slide 7: Shorthand return (2)
	Slide 8: Conversion constructors (1)
	Slide 9: Conversion constructors (2)
	Slide 10: Move semantics (1)
	Slide 11: Move semantics (2)
	Slide 12: Move semantics (3)
	Slide 13: Move semantics (4)
	Slide 14: Move semantics (5)
	Slide 15: Move semantics (6)
	Slide 16: Modules (1)
	Slide 17: Modules (2)
	Slide 18: Modules (3)
	Slide 19: Modules (4)
	Slide 20: Modules (5)
	Slide 21: Modules (6)
	Slide 22: Modules (7)
	Slide 23: Coroutines (1)
	Slide 24: Coroutines (2)

