Constant expressions

Keyword constexpr specifies that it 1s possible to evaluate the result of a function or the
value of a variable at compile time. Example:

#include <numbers> // see https://en.cppreference.com/w/cpp/numeric

constexpr double CircleArea(double radius) { return numbers::p1 * radius * radius; }
// now function CircleArea() can be called from constant expressions

The following expression is an constant expression:
constexpr double al = CircleArea(10); // value of al will be calculated at compile time
al +=10; // error — al 1s constant

The following expressions are not constant expressions:

const double a2 = CircleArea(10); // value of a2 will be calculated at run time
double a3 = CircleArea(10); // value of a3 will be calculated at run time
double a4;

cin >> a4;

double a5 = CircleArea(a4); // value of a5 will be calculated at run time
Constant expressions may improve the application performance. See more at

https://en.cppreference.com/w/cpp/language/constant _expression and
https://en.cppreference.com/w/cpp/language/constexpr

https://en.cppreference.com/w/cpp/numeric
https://en.cppreference.com/w/cpp/language/constant_expression
https://en.cppreference.com/w/cpp/language/constexpr

if / else with initializing

Let us have code snippet:
int n = fun();
if (n>0) {
..... // perform some operations with n

...... // perform some other operations with n

Starting from C++ version 17 we may write this snippet as follows:
if (int n = fun(); n>0) {
..... // perform some operations with n

...... // perform some other operations with n
}+ // from this point variable "n" 1s out of scope

Variable defined and initialized in if-statement 1s visible and has memory:

* 1n conditional expression of if-statement as well as in the conditional expressions of the
following if-else-statements;

* 1n the body of if-statement as well as in the body of the following if-else-statements and
also in the body of final e/se-statement

switch with initializing
Similarly to if / else, in C++ version 17 the switch-statement may also include definition and
initialization of variables. Example:

enum class colors { Red, Green, Blue };
colors GetColor() { }

switch (colors wall = GetColor(); wall)
{
case colors::Red:
....... // do something with variable wall
break;
case colors::Blue:
....... // do something with variable wall
break;
case colors::Green:
....... // do something with variable wall
break;
}+ // from this point variable "wall" 1s out of scope

Default constructors (1)
Default constructor has no arguments. Its body may be (but not must be) empty.

If the class declaration does not contain constructors, the compiler itself generates a
default constructor having empty body. But sometimes you may need a class in which
there are no constructors at all. In that case write:
class Test {

public: Test() = delete; // explicitly deleted default constructor

If the class declaration contains constructors (with or without arguments), the compiler
does not generate i1ts own constructor.

It 1s also possible to forbid the automatic generation of default copy constructor and
default operator= for assignment overloading:
class Test {
public: Test(const Test &) = delete;
Test& operator=(const Test &) = delete;

Default constructors (2)

It may happen that the programmer does not see any need to include a default constructor
into his / her class declaration. But for example the C++ standard containers operate only
with objects from classes having the default constructor. In that case we need to add to
the declaration of our class our own empty default constructor:
class Test {
public: Test() = default; // explicitly defaulted constructor
// we may also write Test() { }

Shorthand return (1)

Let us have:
struct Date {
int day, month, year;
Date(); // default constructor implemented 1n file Date.cpp calls the computer's clock
Date(int d, int m, it y); // implemented 1n file Date.cpp
Js
Then instead of
Date GetDate() {
Date d; // default constructor 1s called
return d;

h

we may write
Date GetDate() {
return Date(); // default constructor 1s called

h

or
Date GetDate() {
return { };

h

return { } means that the default constructor of the return value type is called.

Similarly instead of
Date GetDate() {
Date d(26, 5, 2023);
return d;

h

we may write
Date GetDate() {
return Date(26, 5, 2023);

)
or
Date GetDate() {
return { 26, 5, 2023 };

h

Shorthand return (2)

Conversion constructors (1)

Let us have class
class Testl
{
public:
int value;
Testl(int 1) : value(1) { }
¥
and function
void TestFunl(Testl t)

{

cout << t.value << endl;
)
Then

TestFunl(10); // prints 10

1s correct because the compiler handles the constructor as a casting method: it casts integer 10
to object 7 of class Testl. Of course, the equivalent expression

TestFunl(Testl(10));

1s better to understand. From C++ version 11 any constructor with arguments may be
interpreted as casting operator or in other words, 1s a conversion constructor. In the earlier
versions a conversion constructor had to have default values for all except one of its arguments.

Conversion constructors (2)

Let us have class
class Test2
{
public:
int valuel, value2;
Test2(int 1, 1nt j) : valuel(1), value2(j) { }
¥
and function
void TestFun2(Test2 t)

{

cout << t.valuel << '' <<t.value2 << endl;
h
Then

TestFun2({ 10, 20 }); // prints 10 20
1s equivalent with
TestFun2(Test2(10, 20));

To prevent interpreting a constructor as casting operator declare it with keyword explicit, for
example:

explicit Test2(int 1, int j) : valuel(1), value2(j) { }

After that:

TestFun2({ 10, 20 }); // compile error

Move semantics (1)

Suppose we have class Matrix:
class Matrix
{ .
private:
int nRow = 0;
int nColumn = 0;
double **ppMatrix = nullptr;
public:
Matrix() { }
Matrix(int, int);
Matrix(const Matrix &);
~Matrix();
Matrix &operator=(const Matrix &);
Matrix operator+(const Matrix &);

double **ppMatrix

D_

Move semantics (2)

Suppose we have also a function with prototype:
Matrix Sum(Matrix &, Matrix &);
and code snippet
Matrix a, b;
Matrix ¢ = Sum(a, b); / the sameasc=a+b
As we use call by reference, Sum has access to a and b, therefore copying of arguments is
not needed. But Sum has to create and return the temporary result matrix that is in turn the
argument of copy constructor for ¢. The copy constructor copies all the values from result to
c. At last the result as the local variable of Sum is removed (its destructor is called):
Matrix::Matrix(const Matrix &m)
{ // copy constructor, "this" is matrix ¢ and m is the temporary return value of Sum

this-=>nRow = m.nRow;

this->nColumn = m.nColumn;

this->ppMatrix = new double *[nRow];

for (int 1 = 0; 1 < this->nRow; 1++)

*(this->ppMatrix + 1) = new double[nColumn];
for (int 1 = 0; 1 < this->nRow; 1++)
for (int j = 0; j < this->nColumn; j++)
((this-=>ppMatrix + 1) +j) = *(*(m.ppMatrix + 1) +j);

h

So we have 4 matrices: a, b, ¢ and a temporary.

Move semantics (3)

But actually there 1s no need to allocate new vectors for matrix ¢, copy everything and at
last destroy the temporary matrix from Sum. It is more reasonable to copy only the
numbers of rows and columns and the pointer ppMatrix, 1.e. simply capture the vectors
from heap and use them in c. It 1s said that instead of making a copy we move heap data
(actually we copy the pointers to them) from one object to another.

As at the end of Sum the destructor for its local temporary matrix is called anyway, during
moving we must refuse to delete the data vectors. If the destructor 1s written in the
following way:
Matrix::~Matrix()
d
if (ppMatrix)
{ // 1f ppMatrix is set to 0, deletes nothing
for (int1=0; 1 <nRow; 1++)
d
if (*(ppMatrix + 1))
delete *(ppMatrix +1);
)
delete ppMatrix;
h
h

we must simply set the ppMatrix to nullptr.

Move semantics (4)

But the old copy constructor is still needed because the heap data moving is possible only
when the original is a temporary matrix not needed afterwards. Consequently, we need
two constructors: almost obligatory copy constructor and optional move constructor:
Matrix::Matrix(Matrix &&m)
{ // "this" 1s matrix ¢ and m 1s the temporary return value of Sum

this->nRow = m.nRow;

this->nColumn = m.nColumn;

this->ppMatrix = m.ppMatrix; // move data on heap

m.ppMatrix = nullptr; // when the temporary matrix i1s removed, data on heap 1s kept

h

& & specifies a new data type: rvalue reference. The ordinary reference (&) or lvalue
reference may refer only to lvalues located on a memory field that can be identified (by
identifier, by array index, by pointer, etc.). The rvalue reference may refer to temporary
objects we cannot identify. For example:

Matrix c=a + b;

Here a temporary matrix presenting the result of addition is created, but for us it has no
name and cannot be handled. This matrix is an rvalue and it 1s wise to create ¢ with the
move constructor.

Matrix ¢ = a;
Here we must create ¢ with the copy constructor.

Move semantics (5)

The C++ compiler 1s able to detect whether to use copy constructor (argument 1s lvalue
reference) or move constructor (argument is rvalue reference):

Matrix ¢ = a + b; // if present, the move constructor is called; if not then the copy constructor
Matrix ¢ = a; // the copy constructor 1s called

However,

Matrix ¢ = Sum(a, b); // the copy constructor is called

The problem i1s that the compiler does not know what function Sum actually does and returns.
For example, it may return not result of addition but one of the inputs. To force the call to
move constructor, write:

Matrix ¢ = move(Sum(a, b)); // std::move, 1f necessary, converts lvalue to rvalue

Unnecessary copying may also take place in operator= assignment overloading function.
Therefore it may be wise to overload assignment twice: one with copying and the other with
moving. The main ideas and the technique are the same as in case of constructors.

However, the move assignment operator function has an important difference: 1t must capture
the heap data from temporary object standing right of the = sign, but it must also release its
own heap data that has become outdated.

Matrix a(3, 5), b(5,5), c(5, 5);
.................. // set values to elements of a

b = a; // actually b.operator=(a); copy assignment needed
c =a + b; // actually c.operator(a +b); move assignment may be used

Move semantics (6)
Matrix &Matrix::operator=(const Matrix &m)

{ //' b= a; here "this" means matrix b and m means matrix a
if (this == &m)
return *this;
if (!this->ppMatrix || !m.ppMatrix)
throw new exception("Empty operand(s)");
if (m.nRow != this->nRow || m.nColumn != this->nColumn)
throw new exception("Dimensions do not match");
for (int 1 = 0; 1 < this->nRow; 1++)
for (int j = 0; j < this->nColumn; j++)
((this-=>ppMatrix + 1) +) = *(*(m.ppMatrix + 1) +); // overwrites the old values
return *this;
h
Matrix &Matrix::operator=(Matrix &&m)
{// ¢ =a+ b; here "this" means matrix ¢ and m means temporary matrix got after addition
............................... // the same as above written in brown font
this->Destroy(); // the body 1s equivalent with the body of destructor
// removes the old values
this->ppMatrix = m.ppMatrix;
m.ppMatrix = nullptr;
return *this;

h

Modules (1)

Header files (*.A files) have several problems. For example, we need to avoid multiple
including of the same file, sometimes we must watch on the order of #include directives, etc.
The standard header files may consist of tens of thousands of lines of code — this is a problem
for compilers. Modules are to solve those issues.

To work with modules in Visual Studio 2022 you need to install the modules for version build
tools. To see the instruction type into Google "error C1011" (if the mentioned tools are not
installed you get this fatal error).

Also, set the C++ language standard to Preview — features from the latest C++ working draft
(std:c++ latest) and Enable Experimental C++ Standard Library Module to
Yes(/experimental:module).

Do not try to insert modules into a half ready project. Use modules as the main building
components in your next project that you will start from scratch.

Caution: actually the support of modules in Visual Studio 2022 1s experimental (although
Microsoft claims that C++ v.20 standard modules are fully implemented). You may get
strange error messages or even message E1504 (internal compiler error).

Some useful links:
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-
implementation-unit

https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/cpp20-a-first-module
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit

Modules (2)

A module consists of one (only one) module interface file and optional number of module
implementation files. In Visual Studio 2022 the extension of module interface file 1s *.ixx.
Some other compilers use extension *.cppm. The filename may be any. The module
implementation files are ordinary *.cpp files.

To start add to your project a new module interface file (in Visual Studio it 1s similar to
adding a new item or class). Example:

module; // starts to declare a module

// The next block 1s the global module fragment. Mostly it contains #include directives
// non-importable header files like *.h files from C

#include "stdio.h"

// Then we must set the module name. By default it is the same as the interface filename
export module Examplel;

// In the next block we specify modules that our module must import. The C++ include files
// are importable. We may also import other modules from our project.

import <iostream>;

import <numbers>;

import <string>;

// Next the non-exported declarations must follow

using namespace std;

Modules (3)

// At last we must specify what our module will export. We may export classes, structs,
// functions, namespaces, enumeration classes, etc.
export class Circle

d
public:
double radius = 0,
areca =0,
perimeter = 0;
Circle(double r) : radius(r) {
area = numbers::p1 * radius * radius;
perimeter = 2 * numbers::p1 * radius;
;
string ToString() {
return "Radius: " + to_string(radius) +" Area: " + to string(area) +
" Perimeter: " + to_string(perimeter); }
void PrintCircle() {
printf("%s\n", ToString().c_str()); }
I

Here 1s the end of module intereface. In this simple example module implementation files are
not needed.

Modules (4)

Here 1s file testing module Examplel:
import <iostream>;
import Examplel;
using namespace std;
int main() {
Circle c¢(10);
cout << "Circle parameters ";
c.PrintCircle();
return O;

b

Turn attention that although we imported iostream into module Examplel, in the file for
testing the module (this file does not belong to the module) we need to import it once more.
iostream and any other module imported into our Examplel module are not automatically
exported into into files that in turn import Examplel.

Instead of importing the C++ standard headers separately, you may import them with one
sentence:

import std.core;

std.core does not include headers <atomic>, <condition variable>, <future>, <mutex>,
<thread>, they are joined into std.threading. See more from https://learn.microsoft.com/en-
us/cpp/cpp/modules-cpp?view=msvc-170

21.06.23 — there were problems with std.core

https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170

Modules (5)

module; // module interface file Example2.1xx
#include "time.h"
.............................. // other header files
export module Example2;
import <iostream>;
................................ // other imported modules
using namespace std;
export class Date {
private:

int Day;

char Month[4];

int Year;

............................ // other attributes

Date();
Date(int d, int m, int y);
Date(const Date&);
................................ // other methods
I
export Date CreateRandomDate(Date begin, Date end); // exported function

Modules (6)

#include "time.h" // needed because time() 1s a static function
module Example2; // module implementation file Date.cpp
#pragma warning(disable : 4996)
Date::Date() { // constructor

time(&Now);

struct tm Tm:;

localtime s(&Tm, &Now);

Day = Tm.tm mday; // 1...31

strcpy(Month, MonthNames[Tm.tm monl]); // 0...11

iMonth = Tm.tm_mon + 1;

Year = Tm.tm_year + 1900; // current year - 1900

................................... // other methods

Date CreateRandomDate(Date begin, Date end)
{ // 1mplementation of function declared in module interface file

Modules (7)

If you do not use modules and make changes in a *./ file, the system recompiles the complete
project. Therefore, if you want to save time, put the code of class methods not into the class
declaration but into a separate *.cpp file. In module files making changes in the code of class
methods does not require the immediate recompilation (exception: it is true if you do not
touch the function header). This is because a module interface file does not include any
function implementations, even if the implementations are directly written into the interface
file (as they are in Examplel). In other words, methods implemented in *.h files are by
default inline methods, methods implemented in modules are not.

Coroutines (1)
If a function (caller) calls another function (callee), then the callee runs until its end or
until return statement or until an exception is thrown. After that the local variables of
callee are removed and the caller continues to run.

If the callee 1s not an ordinary function but a coroutine, the callee may temporarily suspend
its work and send some results to the caller. The control 1s switched back to the caller and
the callee pauses its work. When the caller has decided that the callee must continue its
work (for example, when the analysis of data sent by callee is completed), it forces the
callee to resume. It is not multithreading — the caller and callee do not run concurrently. We
may say that the coroutine simply runs in background and suspends and resumes its work
time to time. The figure 1s from https://www.modernescpp.com/index.php/implementing-
futures-with-coroutines:

Caller Function Caller Coroutine

call L/————— callL/q
suspend
resume |
4 T ¥
suspend

| i [o

https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines
https://www.modernescpp.com/index.php/implementing-futures-with-coroutines

Coroutines (2)

A coroutine behaves like an object: it has state. Coroutines do not use the stack: on
suspending the state is stored in a heap-allocated separate object.

A coroutine must contain at least one of the following keywords: co await, co yield,
co_return. A suspended coroutine may simply wait for the resume command (co_await). It
may also exchange data with the caller (co yield) and at the end send to the caller some
result (co return but not return).

Formally, a coroutine 1s defined as any other function:
return value type coroutine name(parameter list) { body }

The return value type cannot be void, C++ standard type like int or standard class like string.
It must be a user's class built according to some strictly specified rules. When the coroutine
starts to run, an object of this class is created (so actually we do not have a return value as
such). That object called as the coroutine interface is responsible for creating, running (i.e.
suspending, resuming, data exchanging) and destroying of the associated with 1t coroutine.
Writing the code for a coroutine class is a serious work and unfortunately C++ v.20 has no
any tools that would make it easier. C++ v.23 can help, but in specific simple cases only.

See the examples from I4X0587 Examples.zip.

The best source for studying coroutines is Nicolai M. Josuttis "C++ 20. The Complete
Guide" 2022.

	Slide 1: Constant expressions
	Slide 2: if / else with initializing
	Slide 3: switch with initializing
	Slide 4: Default constructors (1)
	Slide 5: Default constructors (2)
	Slide 6: Shorthand return (1)
	Slide 7: Shorthand return (2)
	Slide 8: Conversion constructors (1)
	Slide 9: Conversion constructors (2)
	Slide 10: Move semantics (1)
	Slide 11: Move semantics (2)
	Slide 12: Move semantics (3)
	Slide 13: Move semantics (4)
	Slide 14: Move semantics (5)
	Slide 15: Move semantics (6)
	Slide 16: Modules (1)
	Slide 17: Modules (2)
	Slide 18: Modules (3)
	Slide 19: Modules (4)
	Slide 20: Modules (5)
	Slide 21: Modules (6)
	Slide 22: Modules (7)
	Slide 23: Coroutines (1)
	Slide 24: Coroutines (2)

